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S U M M A R Y  
A non-linear theory for shallow shells of revolution is presented in this paper. While arriving at the differential equations, 
large deformations and small strains are taken into account. The solution of equations in the edge zones is based on the 
boundary layer theory. These boundary layer solutions, predominant in the narrow edge zones are superposed on the 
interior solutions, to obtain a complete solution of the problem. For  the interior solution, linear and non-linear 
theories are worked out and it is found that the agreement between the two theories is good even when the ratio 
of the transverse displacement to the thickness of the shell is large. 

1. Introduction 

The problem considered herein is of an axially symmetric shell of arbitrary shape, subjected to 
the loads due to the spinning of the shell. A non-linear membrane theory of shallow elastic 
shells has been presented earlier [-3]. The solution mentioned in [-3], however, does not com- 
pletely describe the exact behavior of the shell. In the edge zones it is found that the bending 
terms are important. Because of the large spinning velocity of the shell, it is necessary to retain 
non-linear terms in the bending theory. The solution is obtained by boundary layer techniques. 
In the range the boundary layer exists, the solution is comprised of boundary layer solution and 
interior solution. The former is valid only in narrow edge zones while the later holds for the 
complete field (a < r < b). 

It is seen that the non-linear character of the equations depends on a non-dimensional 
parameter # defined in equation (v). 

The formulation of the problem is based on the Euler-Bernoulli and Kirchoff assumptions. 
Since the shape of the shell is left arbitrary the governing equations are fairly general in nature. 
It can be noted that the solution mentioned in [3] is a part of the particular solutions of the 
differential equations in this paper. Complete solutions are carried out for spherical shells. 
The numerical computation and the results plotted in the graphs are for spherical shallow 
shells. 

2. Fundamental Equations 

Considering the case of large deformations under the homogeneity and isotropy conditions, one 
can write the strain and displacement relationships for the rotationally symmetric case as 
follows [3]: 

~r = U ' -  Z '  w' + �89 z (2.1a) 

eo = U/r  (2.1b) 

where, ~r and e0 are the radial and circumferential strains and u, v, w are the displacements in 
the directions of r, 0, Z coordinates. Further the moment displacement relations are: 

My = - D (w" + vw'/r) (2. lc) 
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and 

M o = - D ( w ' / r + v w " )  (2.1d) 

The primes denote the differentiation with respect to r, D = Eh3/12 (1 - v 2) represents the rigidity 
of the shell, v is the Poisson ratio and E is the modulus of elasticity of the material of the shell. 
Two arbitrary functions 4' and fi are introduced which are defined by equation (2,2) in terms 
of radial force per unit length of sections of the shell, Nr, and displacement w respectively. 

4 ' = r N r ,  w = - S f l d r  (2.2) 

The type of shell dealt with in this paper is considered to be mounted around a shaft such that 
its inner periphery is fixed and the outside is free. Therefore, the boundary conditions at the 
outside periphery, r = b, are written as, 

Mr(b) = O(b)= 0 (2.3) 

and at the inner boundary r = a, 

fl (a) = U (a) = 0 (2,4) 

3. Formulation of Differential Equations 

It has been shown elsewhere [1] that the general differential equations of shallow shells of 
arbitrary shape can be written as, 

OLfi + (Z' -- t )  4'/r = 0 

and, 

L4'/(Eh) - ( Z ' -  fi/2) fl/r + (3 + v) phf2 2 r/(Eh) = 0 (3.1) 

In the above equations, h denotes the thickness of the shell, (2 the spinning velocity of the shell, 
and p the mass density of the material of the shell. Further, while writing the above equations, 
quantities of the order of q5 3, ~b2fi, q~fl2 etc. have been neglected. In equation (3.1) the equi- 
dimensional operator L is given by the expression, 

L -~ d2/dr2+ (1/r)d/dr-  1/dr 2 (i) 

The particular solution of equations (3.1) is given as 

4 ,1=0 

and 

fll = Z'_+ [(Z') 2 - 2 (3 + v)ph(2 2 r2/(Eh)] ~ (3.2) 

Equations (3.2) essentially are two solutions but because of the physical conditions of the 
problem, discontinuities are disallowed and the solution with a negative sign in (3.2b) should 
be adopted. Substituting equations (3.2) in (3.1) and writing the variables fl and 4' in two parts as 

p=&+/~* 

and 

4' = 0+  4'*, (ii) 

results in eqs. (3.3): 

D Lfl* + ( Z' - i l l )4 '* / r -  fi* 4'* /r = 0 

L4'*/(Eh) - ( Z ' -  fll)fl*/r + �89 = 0 (3.3) 

Equations (3.3) are in terms of the modified functions t* and 4'* which are related to original fi 
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and 0 by eq: (ii). Here in what follows, a general theory for boundary layer occurring near the 
inner periphery is developed. The same technique is used for working out the boundary layer 
solution near the outer periphery. Before developing a solution of equation (3.3) various quan- 
tities involved are non-dimensionalized by writing. 

and 

x = ( r -  a)/l 

fl*---~ rDfl, fll"~ fllDfl, 
Z,~ ---, Z D Z,x, 0"  ~ 0o 0 (3.4) 

Here, Z,~ represents the differential dZ/dx. The parameter 1 denotes the boundary layer width 
and is a small quantity. The quantities r , ,  r 1D, z o  and 0o are introduced such that the variables 
fl, fi, Z,x, and 0 are completely non-dimensionalized. A further discussion on how these quan- 
tities can be fixed will be given later in this paper. By introducing equations (3.4) in (3.3), the 
basic differential equations can be reduced in terms of the non-dimensional parameters 
x, fi, fi, 2,x, and 0. 

D~ 12 fi13 L* fl + Z D Z,x [1 - I/(Zog,~)fllD fi] OD 0/[ (  1 + lx/a) al] 

- 0 , ,  Z O / ( a  + = o 

Oo/(12 Eh) L * 0 -  ZvZ ,x  [1 - l/(zD2,x) fiaDfi] flOfl/[ (1 -- lx/a)al] 

+ (~)flgfi2/(a+ ix) = 0 (3.5) 

The non-dimensional form of the equidimensional operator L is given by L* in equation (iii) 

L* = dZ/dx 2 - l/(a - l x ) d / d x -  [1/(a - I x ) ]  2 (iii) 

Until this point, the parameters rD, 0o and 1 have been left arbitrary. The parameters r i o  and 
Z D are known if the shape of the shell is defined. Since the solution is being sought in the 
boundary layer zone which occurs if the quantity I / ( b -  2) ~ 1, it is justifiable to write, f i / Z x =  
O (1). A relationship between riD, 0o and/ is  established by making the first two terms of equation 
(3.5) of the same order. 

01)/(l 2 Eh) = Z o (1 - r,o/Zo)flo/(al)  (3.6) 

D~ 12 rD = ZD (1 - I r ~D/ZD) Oo/(al) 

Making use of equations (3.4) in (3.2) and simplifying the following equation is obtained. 

fit = ZD/IZ,~ {1 + [1 -- {(1 + l/ax)/Z,x} e f2'] ~} (3.7) 

The non-dimensional velocity parameter f2' is introduced for the simplification of equations 
and is defined as 

f2' = 2 (3 + v)a 212 p hf22/(Z~ Eh) (iv) 

It can be seen that the solution of the form of (3.7) is possible if 

O '<  min. [ z y ( 1  + l/ax)] 2 0 < x < ( b -  a)/l (3.8) 

4. Boundary Conditions 

The boundary conditions (2,3) and (2.4) when expressed in terms of the functions r and 0 and 
then written in terms of perturbation and non-dimensional parameters according to (3.4), 
yield, 

fiD/l {dfi/dx Ix: (b- a), + vl/bfl[~: (b- a>/t } = - fl'~ (b) - v/bill (b) 

O(b) = 0 (4.1) 
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and 

/~, (~,) +/~D/~(o)  = o 

a / l  d O / d x l x  = o - v 0 ( 0 )  = - p h f 2  2 a3/~b D 

S. M i r z a  

The two linear terms in (4.1c) will be of the same order if, 

flV = -- b_ fil (a) (4.2) a 

Equation (4.2) along with (3.6) completely determine the three parameters riD, 0v and I. 

OD = - ZD b/a 2 (1 -- l /ZDf l lD)Ehl  fll (a) 

l = 1 / ~ v 2 ) ( h a / Z D ) 1 / ( 1 - - 1 / Z D f i l D )  (4.3) 

Using equations (3.6) and (4.2), the governing non-linear differential equations (3.5) yield, 

c* # + 2,  x/(1 + t/ax) O + (~b/a) #O/(1 + l/ax) = 0 

L* ~ - 2 ,  x /(1 + l/ax) f i - � 8 9  fl2/(1 + l/ax) = 0 (4.4) 

where the non-linearity parameter  # is given as, 

I~ = fla (a) I /[ZD(1 -- 1/ZDfl,D) ] (V) 

5. Solution of the equations 

At this stage the problem can be divided in two parts:  
(i) when the parameter # 4` 1, then all the differential equations can be linearized. 

L* B + 2 , x / ( l  + l/ax)@ = 0 

L* 0 - Z,x/(1 + l /ax)f i  = 0 (5.1) 

(ii) When the quanti ty l / ( b -  a) 4. 1, the existence of the boundary  layer is guaranteed, which is 
not the case in (i). For  the case when I/a 4` 1, the differential equations, thus simplify to 

d2 f l /dx  2 + 2 ~ 0 = 0 

d2 lit~ dx2 - Z ,x f l  = 0 (5.2) 

6. Example of a spherical cap 

(i) Boundary layer solution near the inner edge: For  the case of a shallow spherical shell, the 
particular solution given by equation (3.2) takes the following form, 

f i l  : Nt" 

where, 

~c = 1/R +_ [1/R 2 - 2 (3 + v) p~2 /E] �89  (6.1) 

Various other parameters introduced in the general theory reduce to, 

rid = - lob 

l = [12(1 - v2)]--~{h/(1/R- to)} ~ 

0D = - [12(1 - g 2 ) ] - * ~ E h 2 1 c b  

and 
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I~ = Rtc/(1 - Rtc) 

The differential equations (5.1) and (5.2) yield, 

L*#+t)=0 

0 

and 

165 

(6.2) 

(6.3a) 

d2 f l / dx  2 -t- t) = 0 

d 2 t ) / d x  2 - fl = 0 (6 .3b )  

Combining the two functions fi and t) and introducing a complex function F such that 

F = fl + i t) , 

the two equations (6.3a) can be written in a convenient form 

I ' F - i F  = 0 

Where i is the complex number X/-  1. The solution of this equation is written as, 

F = fi + it) = C'111 [, , / i(a/l  + x)] + C' 2 K 1 [x / i (a / l  + x)] 

11 and K1 being the associated Bessel functions and C', and C~ are complex constants. Ex- 
pressing 11 and K1 in terms of Kelvin and Thompson function, the solution for fl and t) can be 
easily obtained. 

fi = C 1 ber, (aft + x) - C 2 bei 1 (aft + x) + C3 Kerl (aft + x) 

- C 4 Kei, (aft + x) (6.4) 

= C1 beia (aft+ x) + C2 bei~ (aft + x) + C3 Kei~ (aft+ x) 

+ C4 Kerr (aft + x) (6.4) 

Similarly equations (6.3b) can be combined together which will then yield 

t) = exp ( -  x/x/2 ) C* cos (x/x/2) - a/b sin (x/x/Z) 

fl = e x p ( -  x/x/Z ) C* sin(x/x/Z) + a/b cos(x/x/2) (6.5) 

where 

C* = - [1 - x/2 phi22 a 2 l/t)D]/(1 - x/Zv 1/a) 

(ii) Boundary layer solution near the outer edge: For this case the non-dimensionalization of 
the variable x is achieved by setting 

x = ( b -  r)/l 

Proceeding in the same manner as before, one arrives at a solution similar to (6.5) 

t) = C* sin (x/x/2) exp ( -  x/x~2) (6.6) 

fl = C* cos (x/x/2) e x p ( -  x/x~2) 

In this case the constant C* is given as 

C* = x/2 (1 + v)/(x/2 + b/1) (6.6) 

It can be seen that i f a~0 ,  there is no boundary layer at the inner periphery. It only exists on the 
outside periphery. The complete boundary layer solution for this case is obtained by making 
use of equations (6.6), (3.4), (2.2), and (ii). After simplification, the solution gives, 
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and 

0 = 0o  C* sin (x/x/2) exp ( -  x /x /2)  

fi = K [(b --lx) - bC* cos (x/x/2) e x p ( -  x/x /2)]  

Nr = ~/ (b  - lx) 

No = Oo CT/1 {cos (x/x/2) - sin (x/x/Z) exp ( -  x/x /2)  - 

- �89 ~'2'/(3 - v) [(b - lx) /R]  2 } 

w = hc/x/2 {bx - �89 lx 2 - b/x /2  C* [sin (x/x/2) - cos (x/x/2)] e x p ( -  x/x/2) } - 

- be~x~2 {b (b - a ) / l - l ( b  - a ) 2 / l -  

- b/x/2 C* [sin ((b - a)(, /2)) - cos (b - a)/(x/2/) ] exp ( - (b - a)/(x/2/)) } (6.7) 

(iii) Second Part icular  solution of(3.1). For  the spherical case the second solution of equat ions 
(3.1) can be written as, 

fl = r /R  

= C1 r + C/r + @6) Ehr3 (1 - ~2')g 2 (vi) 

Equat ions  (vi) are writ ten for (2' __> 1. Fo r  the case of (2' = 1, the shell flattens out to a flat plate 
and ~O = 0. The complete solution for •' > l will not  be carried out here. 
(iv) Inter ior  Solution : Linear  membrane  solution of equations (3.1) is given as 

~b= 0 and fi = �89  

With these values of ~ and fi, the expressions for the stresses and deflection are, 

Nr = O, No = phi2 2 r 2 

and 

w = --�88 2 - a 2 ) / R  (6.8) 

The non-l inear  membrane  solution is the same as in (3.2) which yield 

N, = O, No = �89 ~2'/(3 + v)(r/R) 2 (6.9) 

and 

w = �89 [1 -- (1 -- ~2') �89 (r 2 -- a2) /R 

For  the interior solution, valid in the zone a <  r <  b, the problem could also be considered as a 
linear bending problem. For  this case, equat ions (3.1) are linearized and for obtaining their 
homogeneous  solution, the equat ions are combined together in the form 

L(Lf l )  + (~4 fi = 0 

where 

= [12(1 - vZ)/(hZR2)] ~ (vii) 

The solution of this equat ion can be easily writ ten as 

fl = A J1 ( .~-3r)  + B I  1 ( x / i  br) 

While arriving at this solution the other  two constants  are set to zero due to the improper  
behavior  of Y~ and K 1 at r = 0. Superimposing the part icular  solution and applying the boundary  
condi t ion along with the finiteness condi t ion at r = 0, the solution can be simplified to yield, 
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fl = (C 1 + C4) ber 1 (&) + (C 2 + C3) bei,  (dr) + �89 ~2' r/R 

= RDb 2 [(C a - Cz;) beia (dr) - (C 2 - C3) berl (dr)] (6.10) 

In equation (6.10) the constants C~...C4 are given as below while the constant  6 is given by 
equation (vii). 

(1-1- v) f2' ( l - v 2 )  f2' ber~(db) + ~ beil (db) 

C 1 = ( -  1) 4(1 - v) 2 (6.11a) 
d2b2 t/2 +2~ 2 

(1--V 2) ( I + v )  O' 
d2bR (2't 1 beia (db) x/2d R r bera(db) 

(6.11b) 
C 2 = ( - 1 )  4 ( l _ v )  2 0 2 

02b2 - 2 ~  2 

( l - v 2 )  O' r /ber l (db ) ( l + v )  
d2bR x/26 R ~ bei a (6b) 

C 3 = ( -  1) 4 ( 1 - v )  2 (6.11c) 
62b2 */2 +2~ 2 

(1 +v) (1 - v 2) (2' bei t (db) - - -  ~2' 
C4 62bR ~ ~/26R ~ berl(c~b) 

= (6 .11d )  
4 ( 1 - v )  2 

62b2 //2 +2~  2 

: bet 1 (db) ber (db) + bei I (db) bei (6b) + beil (db) ber (db) - 
- ber~ (db) bei (db) 

i /=  [ber a (db)] 2 + [bei~ (db)] 2 

The expressions for stresses and deformation for this case. (a = 0) can now be obtained from 
eqs. (6.10) 

Nr = - Dc~2R/r [(Ca - C4) bei~ (dr) - (C2 - C~)ber 1 (dr)] 

No = D62R/r [(C2 - C3)berl (&) - (Ca - C4)beil (dr)] 

+ Dd 3 R/x /2  [(C1 - C2 + C3 - C4)berl  (dr) - (C~ - C2 - C3 - C4)bei (dr)] + phf22r 2 

and 

w = [(Ca + C2 + C3 + C4)ber l  (6r) - (C~ - C2 - C3 + C4) bei~ (6r)]/(262) ~ 

- �88  + (C~ + C2 + C~ + C,)/(2a~) ~ 

7. Resul ts  and conclus ions  

Detailed computat ions  have been done for the case of a complete shell (a = 0). In the computa-  
tions of the interior solution the results from the linear approximation are comparable to 
those obtained from linear and non-linear membrane theories. It was found that  for f2' =�88 the 
difference in the deflection obtained from linear approximation and linear membrane  theory 
is less than 1%. The deflections obtained from non-linear membrane  theory are about  5 % 
higher than the linear approximation.  It is interesting to note that  for O'=�88 the agreement 
between the linear and non-linear membrane  theories ment ioned in the interior solution is 
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Figure 1. Boundary layer solution for outer boundary. 
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Figure 2. Boundary layer solution for outer boundary. 

I-O 

g o o d  even for  l a rge  d e f o r m a t i o n s  (w/h = 6). 
A s  it ha s  been  d i scussed  ear l ier ,  the  b o u n d a r y  l a y e r  exis ts  a n d  the  d e v i a t i o n s  f r o m  the l i nea r  

a n d  n o n - l i n e a r  m e m b r a n e  s o l u t i o n s  a re  con f ined  to  n a r r o w  edge  zones  if  the  fo l lowing  in-  
e q u a l i t y  ho lds .  

l/(b - a) = ( l /b )  x / h R  {1/ [12  (1 - f2')(1 - v2)]~'-}/(1 - a/b) ~ 1 .  (7.1) 

If  the  shell  is n o t  ve ry  th in  a n d  n o t  t o o  sha l low,  the  a b o v e  c o n d i t i o n  is sa t is f ied i f  g2' is smal l .  
T h e  n o n - l i n e a r i t y  p a r a m e t e r / ~  can  be  wr i t t e n  as  

# = [1 - (1 - ~')~-]/(1 - ~2') ~ (7.2) 

It  c an  eas i ly  be  n o t e d  t ha t  for  the  cases  d i scus sed  above ,  if the  i n e q u a l i t y  (7.1) is sat isf ied,  
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Figure 3. Superposition of boundary layer solution and interior solution. 
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Figure 4. Superposition of boundary layer solution and interior solution. 
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# is always small and under these conditions the differential equations can always be linearized. 
An upper bound on the deflection w can be prescribed if # ~ 1 we know that, w < 0(f2' bZ/R). 
Thus the condition # ~ 1, prescribes that, 

b 2 

Iwl < 

Acknowledgements 

The author would like to express his thanks to Professor M. W. Johnson of the University of 
Wisconsin whose suggestions have been very useful in the preparat ion of this report. 

Journal of Engineering Math., Vol. 5 (1971) 161-170 



170 S. M i r z a  

R E F E R E N C E S  

[1] E. Reissner, Rotationally Symmetric Problems in the Theory of Thin Elastic Shells, Proc. of the 3rd U.S. National 
Congress of Appl. Mech., 1958. 

[2] K. Marguerre, Zur Theorie der gekrtimten Platte grosset FoJ'm~nderung, Proc. V. lntern. Congress. Appl. Mech., 
Cambridge, Mass. 1938. 

[3] M. W. Johnson, On the Dynamics of Shallow Elastic Membranes, Intern. Union of Theoretical and Appli. Mech. 
Symposium on the Theory of Thin Elastic Shells, 1959. 

[-4] E. L. Reiss, H. J. Greenberg and H. B. Keller, Non-Linear Deflections of Shallow Spherical Shells, Journal of' the 
Aeronautical Sciences, July, 1957. 

[5] S. Timoshenko and Woinowsky-Krieger, Theory of Plates and Shells, Second Edition Mac. Graw Hill (U.S.A.) 1959. 
[-6] N. W. McLachlan, Bessel Functions for Engineers, Second Edition, Clarendon Press, Oxford, 1955. 
[7] H. H. Lowell, Tables of Bessel-Kelvin functions ber, bei, Ker, Kei and Other Derivatives for the Argument Range 

0 (0.01) 107.50, National Aero and Space Administration Technical Report R.32, 1959. 

Journal of Engineering Math., Vol. 5 (1971) 161-170 


